Target fragmentation in eN DIS at EIC

C. Weiss (JLab), EIC User Group Meeting, UC Berkeley, 6-9 Jan 14

Dynamics of confinement, chiral symmetry breaking

Largely unexplored!

Target fragmentation in DIS

Current and target regions

QCD factorization

Conditional parton densities

Structures and dynamics

 $x\ll 0.1$ Diffractive protons, neutrons t-channel exchange P, π HERA

 $x\gtrsim 0.1$ Hadronization of nucleon remnant, spin/flavor effects, fragmentation e+e-, hadron-hadron

New opportunities with EIC

Correlations current—target regions
 Charge/flavor separation

Detection requirements

DIS: Hadronic final state

 γ^*N center-of-mass frame

• Hadron production regions

Current fragmentation: Decay of struck quark

Target fragmentation: Breakup of target

Central region: QCD radiaton, slow partons

Kinematic variables

$$x_F = rac{p_h^z}{p_{ ext{max}}}$$
 Feynman variable

$$\eta = \frac{1}{2} \log \frac{E_h + p_h^z}{E_h - p_h^z} \qquad \text{rapidity}$$

 $oldsymbol{p}_{hT}$ hadron transverse momentum

Hadron regions in target rest frame

Energy transfer $u \gg \mu_{\rm had} \sim 1\,{\rm GeV}$

Hadrons described by energy fraction $z=E_h/\nu$

 $E_h \sim
u \qquad z \sim 1 \qquad {
m current\ region}$

 $E_h \sim \mu_{
m had} \quad z \ll 1 \quad$ target region

• Target fragmentation associated with slow hadrons in rest frame $|\boldsymbol{p}| \lesssim 1 \, \mathrm{GeV}$

DIS: Inclusive cross section

$$\sigma = f(x) \times \sigma_{\rm hard}(x, Q^2)$$

$$f(x) = \sum_{X'} \int d^2k_T$$
$$\langle P|a^{\dagger}|X'\rangle\langle X'|a|P\rangle_{k^+=xP^+}$$

Factorization

Interaction decreases at short distances: Asymptotic freedom

Separate scales $Q^2\gg\mu_{\rm had}^2$

 $\sigma_{
m hard}$ calculable in pQCD

Parton distribution PDF

Light-cone momentum density in target, probabilistic interpretation

QCD radiation: $\log Q^2$ dependence, DGLAP evolution

Universality

PDF indpendent of hard process

Same in $\nu N \to X$, $NN \to X+$ jets, dileptons

DIS: Target fragmentation

$$\sigma = f_h(x; \beta, p_T) \times \sigma_{\rm hard}(x, Q^2)$$

$$f_h(x; \beta, p_T) = \sum_{X'} \int d^2k_T$$
$$\langle P|a^{\dagger}|hX'\rangle\langle hX'|a|P\rangle_{k^+=xP^+}$$

• Factorization Trentadue, Veneziano 94; Collins 98

 $\sigma_{\rm hard}$ same as in inclusive

 Q^2 scaling for fixed $\beta, p_T \ll Q$ Can be tested experimentally

Conditional parton distribution cPDF
 Alt. Fracture function

Probability to find hadron with β, p_T after removing parton with x

$$\beta = p_h^+/(1-x)P^+$$
 LC mom. fraction

Properties

cPDF indpendent of hard process, expresses structure of target

DGLAP evolution Collins 98: Same as PDF

DIS: Conditional PDFs

cPDF is object in itself

Defined by factorization theorem, universal

Can be extracted from data

• Interpretation at $x \ll 0.1$

mainly

Partonic content of "exchange:" Regge trajectory, single hadron . . .

Use invariant momentum transfer $t(\beta, p_T)$

Can be made rigorous in special cases: π pole

• Interpretation at $x \gtrsim 0.1$

Hadronization of nucleon with "hole" in light–front wave function

Dynamics of chiral symmetry breaking, color confinement

Charge/spin/flavor dependence

Dynamics: Diffractive protons

• Diffractive DIS $\gamma^* p \to p + \text{gap} + X$

Extensively studied at HERA $x < 10^{-2}$

Diffractive PDFs: DGLAP evolution, global fits w. DIS, jets, heavy flavors

Interpreted as partonic content of pomeron cf. soft hadronic interactions

$$f_{j/p}(x,x_{\mathbf{P}},t) = f_{j/\mathbf{P}}(x/x_{\mathbf{P}}) f_{\mathbf{P}/p}(x_{\mathbf{P}},t)$$

Open questions

Limitations of Regge ansatz? Slope $\alpha'_{\rm eff}(Q^2)$, non-linear t-dependence? Luminosity, multidimensional binning

Non-singlet diffractive PDFs? ρ trajectory, soft-hard transtion? Correlation measurements \rightarrow later

Spin dependence of diffraction?
Polarized beams

$$t_{\min} = -\frac{x_{\pi}^2 M_N^2}{1 - x_{\pi}}, \qquad x_{\pi} > x$$

- Charge-exchange DIS $\gamma^*p \to n+X$ Forward neutrons at HERA $x<10^{-2}$ JLab 12 GeV approved experiment Keppel et al.
- Pion exchange contribution → Talk Sargsian

Pole at $t=M_\pi^2$, residue given by pion PDF

Measurements done away from pole $t < t_{\rm min}$ Pole term extracted using on-shell extrapolatn or models of non-pole background

Pion structure with EIC

Access to x < 0.1 for small $|t_{\min}|$

Good resolution in neutron $\beta \approx 1-x_\pi$ Forward detection

Access to $p_T \lesssim 100 \, \mathrm{MeV}$

Optimal conditions for pion structure

How does nucleon with "hole" materialize?

Color neutralization dynamics?

Chiral symmetry breaking: $q\bar{q}$ pair condensate, effective spin-flavor interactions?

• String fragmentation model Andersson et al 80's. Basic template for color neutralization

$$e^+e^- \qquad qar{q} ext{ string}$$
 $e^+N \qquad q(qq) ext{ string}$

 Λ production cPDFs from neutrino and DIS data [Ceccopieri, Mancusi 12]. Strong discrepancy with string-based model [Kaidalov Piskounova]

Dynamics: Spin dependence

Polarized DIS leaves remnant system with definite spin

Study spin dependence of hadronization at fixed x and β

Observables sensitive to remnant spin

 Δ -N production ratio Strikman 13

Polarized Λ production

Azimuthal asymmetries in target fragmentation with beam/target spin
 Anselmino, Barone, Kotzinian 11

$$\frac{d^{5}\sigma}{dx \ dQ^{2} \ d\beta_{h} \ dp_{hT} \ d\phi_{h}} = [...] + \sum_{n} [...] \cos n\phi_{h} + \sum_{m} [...] \sin m\phi_{h}$$

 $T{\operatorname{\mathsf{-even}}}$ and $T{\operatorname{\mathsf{-odd}}}$ structures, cf. SIDIS in current fragmentation region

 Control charge/flavor of removed quark through current fragmentation hadrons

Singlet–nonsinglet separation with $\pi^+ \pm \pi^-$

Sea quarks with current antiprotons

Strangeness with K^+, K^-

Feasible with EIC

CM energy for current-target separation

Luminosity for correlation measurements

ullet Beyond collinear: p_T dependent correlations

Sea quarks in correlated pairs of size $ho_{
m chiral} \ll 1$ fm

Back-to-back correlations between current and target hadrons Kinematics where QCD radiation suppressed. Schweitzer, Strikman, CW 12

Dynamical origin of intrinsic k_T ? o Talk M. Baker

Detector requirements

Good acceptance for forward protons/neutrons with longitudinal momenta $p_{\parallel}/p_{\rm beam}\sim 0.3-1$ Good longitudinal momentum resolution near $p_{\parallel}/p_{\rm beam}\sim 1$ Transverse momentum coverage and resolution at $p_T\ll 100\,{\rm MeV}$

Summary

 Target fragmentation as dynamical manifestation of color confinement and chiral symmetry breaking

Resolution and identification forward pions/kaons with $p_{\parallel}/p_{
m beam} \lesssim 0.3$

- Conditional PDFs as unifying concept: Defined through factorization theorem, extracted from data, interpreted in dynamical models
- EIC has unique potential for target fragmentation studies
- ullet Further: Target fragmentation in eA o angle Talks M. Sargsian, Ch. Hyde